

TRR 80 Sonderseminar

Am Mittwoch, den 3. Dezember um 15:45 Uhr

spricht

Prof. Dr. Takahiro Onimaru

Department of Quantum Matter, Graduate School of Advanced Sciences of Matter Hiroshima University

über das Thema

Strongly correlated electronic phenomena arising from quadrupolar degrees of freedom in non-Kramers $4f^2$ systems PrT_2Zn_{20} (T = Rh and Ir)

There has been considerable interest in praseodymium-based intermetallic compounds with $4f^2$ electronic configurations, because an abundance of unusual phenomena arising from strong hybridization between 4f and conduction electrons has been discovered in Pr-filled skutterudite; heavy-fermion superconductivity in PrOs₄Sb₁₂, a metal-insulator transition in PrRu₄P₁₂, and scalar-type multipole order in PrFe₄P₁₂ [1,2]. We have recently focused on a novel family of Pr-based compounds with a caged structure, Pr T_2 Zn₂₀ (*T: Transition metal*), where large coordination number of the Pr ion leads to weak crystalline electric field (CEF) effect, whereas hybridization of the 4f² electrons with conduction electrons of cage atoms is strengthened. Such conditions may enable the compounds to show strongly correlated electronic phenomena.

Keeping this in mind, we have synthesized and studied the caged compounds PrT_2Zn_{20} (T = Ru, Rh, and Ir) crystallizing in the cubic CeCr₂Al₂₀-type structure, where the Pr ion is encapsulated in a highly symmetric Zn cage [3]. The three compounds show the Van-Vleck paramagnetic behavior in χ (T), indicating the nonmagnetic CEF ground states [4,5]. The magnetic specific heat C_{mag} shows a Schottky-type peak at around 14 K, which can be reproduced by a doublet-triplet model [6,7]. These facts corroborate that the CEF ground states of the Pr ions are the nonmagnetic Γ_3 doublet with quadrupolar degrees of freedom. For T = Rh and Ir, the AFQ order of the non-magnetic Γ_3 doublet takes place at $T_Q=0.06$ and 0.11 K, respectively [6,7]. Furthermore, below T_Q , superconducting transitions occur at $T_c=0.05$ and 0.06 K. The entropy at T_Q 's is only 10 and 20% of Rln2 which is expected for the twofold degeneracy of the Γ_3 doublet, indicating that fluctuations of quadrupole probably remain active below T_Q . The facts suggest that the superconducting Copper pair is possibly mediated by the quadrupole fluctuations. Furthermore, in C_{mag} for T = Rh and Ir, broad peaks appear at around 0.3 K, where the electrical ρ shows temperature dependence of $r(T) \mu \sqrt{T}$. The anomalous temperature dependence of C_{mag} and ρ possibly suggests emergence of a quadrupole Kondo lattice formed by the strong hybridization of the 4f² electrons with the conduction electrons [8].

References

Gäste sind herzlich willkommen.

Der Vortrag findet im Seminarraum S-288 / Institut für Physik, Universität Augsburg statt.

Gastgeber: Prof. Dr. Philipp Gegenwart www.trr80.de

^[1] H. Sato et al., Handbook of Magnetic Materials 18, 1 (2009).

^[2] E. D. Bauer et al., Phys. Rev. B 65, 100506 (2002).

^[3] T. Nasch et al., Z. Naturforsch. B: Chem. Sci. 52, 1023 (1997).

^[4] T. Onimaru et al., J. Phys. Soc. Jpn. 79, 033704 (2010).

^[5] T. Onimaru et al., J. Phys.: Cond. Matter 24, 294207 (2012).

^[6] T. Onimaru et al., Phys. Rev. Lett. 106, 177001 (2011).

^[7] T. Onimaru et al., Phys. Rev. B 86, 184426 (2012).

^[8] A. Tsuruta and K. Miyake, unpublished.